
May 1993 UILU-ENG-93-2220

CRHC-93-11

Center for Reliable and High-Performance Computing

. / - .- -: . J"
• _.,

COMPILER-ASSISTED
MULTIPLE INSTRUCTION
ROLLBACK RECOVERY
USING A READ BUFFER

N. J. Alewine, S.-K. Chen, W. K. Fuchs, and W.-M. Hwu

(NASa-Ca.-1931?5) CUMPILER-ASS ISTED

MULTIPLE INSTRUCTION R_3LLBACK

_,LCCI_/F!RY !.J$I _'':-_: _, R_AL) IUFF_R,

(Illinois Univ.) 3_ p

N93-zgI70

Uncl _s

G3/61 0111503

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.



L]_CL.-\S S ! F I ED
SECUmFY C_S_IFI_rION OF f_JS PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-93-2220

REPORT DOCUMENTATION PAGE

lb. RESTRICTIVE MARKINGS

None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

CRHC-93-11

6a. NAME OF PERFORMING ORGANIZATION

6b. OFFICE SY'IVlBOL

(If applicable)

N/A

Coordinated Science Lab

University of Illinois

6c. ADDRESS(_ State, and ZIPCodc)

XX__Y_X_X_ 1308 &¢. Main St.

I Bb. OFFICE SYMBOL
(If applicab/c)

7a. NAME OF MONITORING ORGANIZATION
Intl Business Machines

NASA and Office of Naval Research

7b. AOORESS(Ciry, State, andZIPCodc)
Boca Raton FL

Moffitt Field, CA

Arlington, VA

9. PROCUREMENTINSTRUMENTIDENTIFICATION NUMBER

Urbana, IL 61801

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

7A

_.AODRESS(O_ State, and ZlPCode) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT I TNAOSK

ELEMENT NO. NO.
7B

1. TITLE Onclude Security Oa_fication)

Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer

WORK UNIT

ACCESSION NO.

12. PERSONAL AUTHOR(S) ALEWINE, N. J., S.-K.

13a. TYPE OF REP'ORT 113b.TIME COVERED

Technical ! FROM TO

16. SUPPLEMENTARY NOTATION

Chen, W. K. Fuchs, and W.-M. Hwu

I4. DATE OFREPORT _a_Mocrth, Oa_ IS. PAGE COUNT1993 May 31

17, COSATICODES 18. S_BJEETTERMS(Continue onrever_if_ece_a_ ar_didenti_ by bl_k numbed

FIELD GROUP I SUB-GROUP fault-tolerance, error recovery, instruction retry,

I compilers, hardware assisted retry

!9 ABSTR_CT(Continueonreve_e ifnece_a_ aodidenti_ by bl_k humor)

._Iultii)le instruction rollback (.\111{) is a Iechnique that has been implemented in mainframe computers to

pro_i,te rapid recovery f:om transien_ processor failures. Ilardware-based MIR designs eliminate rollback

data hazards by providing data redundancy i,nplemeuted in hardware. Compiler-based M[I_ designs have

also been developed which remove rollback data hazzards directly with data-flow transformations.

This paper focuses on compiler-assisted techniques to achieve multiple instructionrollback recovery. X\"e

observe that some data hazards resulting rom instruction rollback can be resolved emciently by provid-

ing an operand read buffer while others are resolved more efficiently with compiler transformations. A

compiler-assisted multiple instructionrollback scheme is developed which combines hardware-implemented

!.,t., redundancy wit h compiler-d riven hazard removal transformation.s Experimental performance eval,:a-

tions indicate improved efficiency over previous hardware-based and compiler-based schemes.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT J21. ABSTRACT SECURITY CLASSIFICATION

_IUNCLASSIFIEDAJNLIMITED [] SAME AS RPT. [-1 DTIC USERS Ij Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 122b.TELEPHONEOncIudeAre, Code) IZ2c. OFF,CE SYMBOL

I I

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UFCLASS IFIED



COMPILER-ASSISTED MULTIPLE INSTRUCTION

ROLLBACK RECOVERY USING A READ BUFFER

N. J. Alewine x, ,ft.-I(. G"hen, W. K. Fuch_, W.-M. Hum

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory
1308 West Main Street

University of Rlinois

Urbana, IL 61801

Primary contact: W. Kent Fuchs

Phone: (217) 333-8294

FAX: (217) 244-5686
e-mail to fuchs@crhc.uiuc, edu

May, 1993

ABSTRACT

Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe com-

puters to provide rapid recovery from transient processor failures. Hardware-based MIR designs

eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-

based MIR designshave also been developed which remove rollbackdata hazards directlywith
data-flowtransformations.

This paper focuseson compiler-assistedtechniquesto achievemultipleinstructionrollbackre-

covery. We observe that some data hazards resultingfrom instructionrollbackcan be resolved

efficientlyby providingan operand read bufferwhile othersare resolvedmore efficientlywith com-

pilertransformations.A compiler-assistedmultipleinstructionrollbackscheme isdeveloped which

combines hardware-implemented data redundancy with compiler-drivenhazard removal transforma-

tions.Experimental performance evaluationsindicateimproved efficiencyover previous hardware

based and compiler-basedschemes.
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1 Introduction

Instruction retry is a technique for rapid recovery from transient faults in a processing system.

Multiple instruction rollback recovery is particularly appropriate when error detection latencies or

when error reporting latencies are greater than a single instruction cycle.

When transient processor errors occur, multiple instruction rollback (also referred to as mul-

tiple instruction retry or simply instruction retry) can be an effective alternative to system-level

checkpointing and rollback recovery [1-6]. Multiple instruction retry within a sliding window of

a few instructions [2-5], or re-execution of a few cycles [7], can be implemented in parallel with

concurrent, algorithm-based, or control-flow error detection methods for recovery from transient

processor errors.

1.1 Hardware-Based Instruction Rollback

Hardware implemented instruction retry schemes belong to one of two groups: 1) full checkpointing

and 2) incremental checkpointing. Full checkpointing maintains "snapshots" of the required system

state space at regular, or predetermined, intervals. Upon error detection, the system can be rolled

back to the appropriate checkpointed system state. Incremental checkpointing maintains changes

to the system state in a "sliding window". Upon error detection the system state is restored

by undoing, or "backing-out" the system state changes up to the instruction in which the error

occurred.

The issuesassociatedwith instructionretryare similarto the issuesencountered with exception

handling in an out-of-orderinstructionexecution architecture.Ifan instructionisto write to a

registerand N isthe ma_mum errordetectionlatency (or exceptionlatency),two copiesof the

data must be maintained forN cycles.Hardware schemes such as reorderbuffers,historybuffers,

futurefiles[8],and micro-rollba_k[2]differin where the updated and old valuesreside,circuit

complexity,CPU cycletimes,and rollbackefficiency.

Table 1 givesa descriptionof varioushardware-ba_ed methods to restorethe generalpurpose

registerfilecontentsduringsingleor multipleinstructionrollback.In the VAX 8600 and VAX 9000,

errorsare detected priorto the completion of a faultyinstruction.For most VAX instructions,

updates to the system stateoccur at the end of the instruction.Ifthe errorisdetected priorto

the updating ofthe system state,the instructioncan be rolledback and re-executed.Ifthe system



Table 1: Hardware-based single and multiple instruction rollback schemes.

Rollback Scheme

IBM4341[9]
IBM3o81[z]
VAX 8600 [10]

IBM patent 4,912,707 [6]

IBM patent 4,044,337 [11]

micro-rollback [2]

history buffer [8]
history fih [8]
VAX 9000 [12]

IBMz/s 9000[5]

Checkpoint

Type

full
full
full

full
incremental

incremental

incremental

incremental

full
incremental

Rollback

Distance

singleinstr.

10-20 instr.

singleinstr.

variable

singleinstr.

variable

variable

vaxiable

singleinstr.
variable

Location of Data

Primary

feaster file

registerfile

registerfile

feaster file

registerfile

write buffer

registerfile

re_sterfile

registerfile

virtualfile

Redundant

shadow file

shadow file

not required

shadow file

shadow files

registerfile

historybuffer

shadow file

not required

physical file

state has changed prior to detection of the error, a flag is set to indicate that instruction rollback

cannot be accomplished. Redundant data storage is not required for the VAX 8600 and VAX 9000.

The IBM 4341, IBM 3081, IBM patent 4,912,707, IBM patent 4,044,337, and history file all

require shadow file structures to maintain redundant data. This data is used to restore the system

state during rollback recovery. Shadow file structures can add significant circuit overhead, although

the level sensitive scan design [13] of the IBM 4341 and IBM 3081 provides this feature without

additional cost over that incurred to obtain testability. 2 The VAX 8600 and VAX 9000 schemes

avoid shadow files, however, require an error detection latency of only one instruction.

The micro-rollback scheme also avoids shadow fries by using a delayed write buffer to prevent

old data from being overwritten until the error detection latency has expired; ensuring that the

new data is fault-free. In a delayed write scheme, the most recent write values are contained in

the delayed write buffer, and bypass circuitry is required to forward this data on subsequent reads.

The performance impact introduced by the bypass circuitry is a function of the register Me size

and the maximum rollback distance [2].

The history buffer scheme maintains redundant data in a separate push-down array and there-

fore does not require bypass circuitry [8]. The history buffer does however require an extra register

file port which complicates the file design and can impact performance by increasing fih access

2The 126 scan rings of the IBM 3081 contains 35,000 bits of data.
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times.

In an effort to increase the register file size while maintaining down-level code compatibil-

ity relative to the 16 architectural registers, the IBM E/S 9000 has introduced a virtual register

management (VRM) system [14]. The VRM circuitry dynamically maps the eight architectural

registers into 32 physical registers. When the data in a physical register becomes obsolete, the

physical register is released for reassignment as a new virtual register. Although the VR.M system

was primarily intended to reduce register pressure and therefore improve system performance, it has

been extended to provide data redundancy to assist in rollback recovery. In the VRM extension,

remapping of a physical register to a new virtual register is postponed until the error detection

latency has been exceeded for the data contained in the physical register.

1.2 Compiler-Based Instruction Rollback

Recently, compiler-based approaches to multiple instruction rollback recovery have been inves-

tigated [3,4]. Compiler-based MIR uses data-flow manipulations to remove data hazards that

result from multiple instruction rollback. Rollback data hazards (or just hazards) are identified

by antidependencie# 3 of length __ N, where N represents the maximum rollback distance. Antide-

pendencies are removed at three levels: 1) pseudo-code level, or the code level prior to variables

being assigned to physical registers, 2) machine-code level,, or the code level in which variables are

assigned to physical registers, and 3) post-pass level, which represents assembler-level code emitted

by the compiler. Compiler-based multiple instruction rollback reduces the requirement for data

redundancy logic present in hardware-based instruction rollback approaches.

1.3 Compiler-Assisted Instruction Rollback

Compiler-based multiple instruction rollback resolves all data hazards using compiler transforma-

tions. This paper introduces a compiler-assisted instruction rollback scheme which uses dedicated

data redundancy hardware to resolve one type of rollback data hazard while relying on compiler

assistance to resolve the remaining hazards. Experimental results indicate that by exploiting the

unique characteristics of differing hazard types, the new compiler-assisted MIR design can achieve

superior performance to either a hardware-only or compiler-based instruction rollback scheme.

3For a complete presentation of dat_-flow properties and manipulation methods, see [15].
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2 Error Model and Hazard Classification

2.1 Rollback Data Hazard Model

The followingfourassumptions areusedinthe generalerrormodel: i)the maximum errordetection

latencyisN instructions,2)memory and I/O have delayedwritebuffersand can rollbackN cycles,

3) the statesofthe program counterand program statusword (PSW) are preservedby an external

recordingdeviceor by shadow registers[2],and 4) the CPU statecan be restoredby loading the

correctcontentsof the registerfile,progrmm counter,and PSW.

Given the above assumptions,any errorwhich does not manifest itselfas an illegalpath in the

control-flowgraph (CFG) of the program isMlowed provided that the followingtwo conditionsare

satisfied:I) registerfilecontentsdo not spontaneouslychange, and 2) data can not be writtento

an incorrectregisterlocation.There are four targetederrortypes: 1) CPU errorssuch as those

caused by an ALU failure,2) incorrectvaluesbeing read from I/O, memory, the registerfile,or

extern_lfunctionalunits such as the floatingpoint unit,3) correct/incorrectvalues being read

from incorrectlocationswithinthe I/O, memory, or registerfile,and 4) incorrectbranch decisions

resultingfrom errortypes i,2,or 3.

2.2 Hazard Classification

The code can be representedas a CFG G(V',E), where V isthe setof nodes denoting instructions

and E isthe set of edges denoting control-flow.Ifthere isa directcontrol-flowfrom instruction

i, denoted I_, to lj, where I_ E V and Ij E V, then there is an edge (I_, Ij) E E. Let d,,_,_(I_, Ij)

denote the smallest number of instructions along any path from I_ to Ij.

The hazard set Hregs of the error model is defined as the set of pseudo registers (or machine

registers) whose values are inconsistent during different executions of an instruction sequence due

to retry. A formal classification of hazard set Hregm follows.

Property 1: z E Hre_e iff there exists a sequence of instructions I1, I2,..., IN which form a

legal walk 4 in G such that z is live at/1, and z is defined during the walk.

Proof: For the i.fcase, _n error occurring in Il will be detected by IN. During the retry of I1,

z will be in an inconsistent state since it was defined during the walk. Since z is live at I1, there

'A wo/k is a sequence of edge traversals in a graph where the edges visited can be repeated [16],
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issome path along which z isused priorto itsredefinition,and sincez isin an inconsistentstate,

z E Hregm. For the only ifcase,we suppose the contrary.Assume that among alllegalwalks of

length N in G, eitherz isnot liveat the beginning,or z isnot definedduring the walk. It then

followsthat z eitherhas no use,or z isnot changed. (The errormodel does not allow a writeto

a wrong locationand the contentsofregisterz can not spontaneously change.) Thereforethere is

no inconsistency problem for z, which implies z _ Hre_o.

Property 2: Hazards can be classified as one of two types: 1) those that appear as antide-

pendencies of length <_ N in G(V, E), referred to as on-path hazards, and 2) those that appear at

branch boundaries, referred to as branch hazards. These two hazard types may overlap.

Proof: Since z E H, there exists a legal walk Wx = I1,I2,...,IN in G, such that z is live at

/1, and after the execution of Ix,I2,...,IN in sequence, z has a different value. The latter implies

that there is at least one instruction defining z along Wx (the error model does not allow a write to

a wrong location and the content of register z can not spontaneously change). Let i be the largest

index that Ii defines z, where i E {1, 2, ..., N). Property 1 implies that there exists a legal walk

W2 in G, beginning with Ix, such that the first instruction Ij along W2 referring z is a use. Case

1: if W2 C W1, instructions Ij and Ii constitute an antidependency of length _< N, and there is

an on-path hazard on z. Case 2: if W2 _ Wx, there exists a branch instruction It between Ix and

Ii-1. Since d_i,,(It, l/) _< N, there is a hazard on z at a branch boundary.

An on-path or branch data hazard occurs when Ii defines variable z, and after rollback, Ij uses

the corrupted z value prior to its being redefined. To simplify subsequent discussion, such on-path

and branch hazards will be denoted ho(i,j,z)and hs(i,j, z) respectively. Figure 1 illustrates this

hazard notation.

3 Compiler-Assisted Instruction Rollback

As shown in Section2,rollbackdata hazards are of two types:I) on-path hazards,and 2) branch

hazards. Previous work has shown that compiler-drivendata-flowmanipulations can be used to

resolveboth on-path [3]and branch [4]hazards. Compiler-assistedmultiple instructionrollback

describedin thissectionuseshardware to resolveon-path hazards and relieson compiler assistance

to resolvethe remaining branch hazards.
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Figure1: On-path and branch hazards.

3.1 On-path Hazard Resolution Using a Read Buffer

Figure 2 shows a hardware scheme to resolve on-path hazards. A read buffer is attached to the

output ports of the register file. Each time a register is used it appears on the read port and is

saved in the read buffer. If a register r_ is defined in Ii and it is an on-path hazard, then rk must

have been read within the last/V cycles. In this case, the read buffer will contain the old value

and it is permissible to write the new value into the register file. In the event of a rollback of N

instructions, the contents of the read buffer are flushed in reverse order and stored back to the

register file. For an on-path hazard, the path taken after the rollback will be the same as the path

taken prior to rollback and each read of rk will produce the same value as before. It is assumed

that the read buffer is an integral part of the register file and any error in the system does not

corrupt the transfer to the read buffer or its contents.

In contrast to a write history buffer which forces a read of rk prior to writing rk, the read buffer

monitors the register file ports and stores only the values read as part of the normal program flow

and, therefore, should not significantly impact the register file performance or CPU cycle time. The

read buffer is twice the width of a register with a depth of/V. This is twice the size of a delayed

write buffer, but eliminates the requirement for complex bypassing and prioritization logic.

6



Figure2: Read buffer.

3.1.1 Covering on-path hazards

In addition to resolvingallon-path hazards, the read bufferwillresolvesome branch hazards.

Figure3 shows an on-path hazard and a branch hazard both with defmitionsofz in I_and uses of

z, afterrollback,in instructionsIj and lj,respectively.Note that ifpath !isinitiallytaken,the

read bufferwillcontainthe old valueof z and rollbackwould be successful.However ifpath m is

taken,the read bufferwillnot containthe old value of z and rollbackwould be unsuccessful.If

onlypaths such as Iexist,the presenceofthe on-path hazard assuressuccessfulrollbackor "covers"

the branch hazard. In thiscase,resolutionof the branch hazard using compiler techniquesisnot

necessary.

3.1.2 Post-pass transformation

Given the efficiency of the read buffer in resolving on-path hazards, a post-pass transformation on

assembler-level code becomes possible as an alternative to nop insertion transformations [3]. The

post-pass transformation creates on-path hazards when necessary to assure that all branch hazards

are resolved by the read buffer. Given one such branch hazard which defines physical register rk

at instruction Ii, the transformation inserts an MOV rk, r_ instruction immediately before Ii. This

guarantees that all paths leading to Ii are like path I in Figure 3.
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Figure 3: Covering on-path hazard.

3.2 Branch Hazard Resolution

Compiler transformations have been shown to be effective in resolving branch hazards [4]. Branch

hazards are resolved at three levels: 1) pseudo-level, 2) machine-level, sad 3) post-pass level.

Pseudo-level hazards are removed by variable renaming, for example, renaming variable z to y in

instruction I_ of Figure 1. Machine-level branch hazards occur when register assignments result in

branch hazards that were not present at the pseudo-level. Machine-level hazards axe resolved by

adding hazard constraints to live range constraints prior to register assignment. Branch hazards

which remain after pseudo-level sad machine-level transformations are resolved at the post-pass

level with read insertions as described in Section 3.1.2.

The primary pseudo-level renaming transformation for the removal of branch hazards, involves

node splitting [4]. This section presents a new one-pass node splitting algorithm which results in

marginally reduced code growths sad dramatically reduced compile-times relative to previous node

splitting algorithms.



3.2.1 Iterative node splitting algorithm

Node splitting breaks equivalence relationships which would prevent pseudo register renanling [3,

15]. When two definitions of a hazard variable reach a node in which the hazard variable is live, the

node is split. Node splitting to resolve one hazard variable often resolves other unrelated hazard

variables. This implies that the hazard set should be recalculated after splitting is performed

for each hazard variable. Previous node splitting algorithms use this iterative algorithm to avoid

unnecessary node splitting [3].

Figure 4 demonstrates the effect of the iterative node splitting algorithm on an example sub-

graph. Node splitting relative to hazard variable z ensures that the definition of z in node nl and

the definition of z in node n2 do not both reach the same use of z in node ns. Node splitting

relative to y ensures that the definition of y in node n3 and the definition of y in node n4 do not

both reach the same use of y in node he. Figure 4 also shows _n optimal subgraph which resolves

both hazards with less splitting than produced by the iterative algorithm, indicating that excessive

node splitting is possible with the iterative algorithm.

3.2.2 Node splitting using graph coloring

To ensure minimal splitting, a new node splitting algorithm is developed using the concept of

conflicting parents [17]. Ensuring that node n does not have conflicting parents enables resolution

of the hazard using variable renaming. The node splitting strategy for a particular node is to group

the parents of that node such that elements within a group do not conflict. Each group becomes

parent nodes for a duplicate of the original node. For example, if node n has six parent nodes and

these nodes can be organized into three nonconflicting groups, then only three total copies of n axe

required.

Figure 5 illustratesthe use of conflictingparents and graph coloringin node splittingfor the

QSORT applicationdescribedinTable 3 ofSection4.1.Node splittingisperformed on pseudo-level

code, which for thisexample isrepresentedby [,codefrom the IMPACT C compiler [18].Figure

5 shows node 48 from the QSORT application.Node 48 has sixparent nodes priorto splitting.

These nodes can be arranged in a parent conflictgraph, where each arc of the graph represents

two nodes which conflict.Establishinggroups can be achieved by findingthe minimum coloring

of the parent conflictgraph, i.e.,coloringthe nodes such that no two nodes connected by an arc

9
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Figure 4: Iterative node splitting relative to hazard variables z and y.
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Node48beforesplitting

Parentconflict graph

Node 48, 48', and 48" after splitting

Figure 5: Node splitting using graph coloring; QSORT.

have the same color. For the example shown in Figure 5, three colors are sufficient to color the

parent conflict graph, resulting in the splitting of node 48 into nodes 48, 48' and 48". Determining

whether a graph is k-colorable is NP-complete in general. The graph coloring heuristic used for our

one-pass node splitting algorithm is a modified version of an algorithm used for register allocation
4)

[15].

3.2.3 One-pass node splitting algorithm

Both live_in(n) and reaching_out(n) 5 analyses are required to identify conflicting parent nodes. A

one-pass node splitting algorithm becomes possible by precalculating live_in and the hazard node

set, and then, beginning with the root node, splitting in a topological traversal of the CFG. A

topological traversal ensures than when processing node n, all ancestors of n have been processed

and no descendantsof n have been processed.This lattercaseensuresthat the presplitcalculation

of live_in(n)can be used for parent conflictidentificationwhen processinga given node. Unlike

live_in(n), reaching=out(n) is affected by the splitting of ancestor nodes. Since reaching_out(n)

SA complete description of d_t_flow terminology can be found in "Compilers: Principles, Techniques, and Tools",

Aho et aL, [15].
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Table2: Nodesplitting algorithmcomparisons:COMPRESS.

• IterativeAlgorithm run time --614.0seconds

• One-pass Algorithm run time = 20.3seconds

• Speedup = 30.2

Orig. Node Cnt. IterativeAlg. % Increase One-pass Alg. % Increase

547 601 9.9 566 3.5
461 499 8.2 496 7.6

144 147 2.1 147 2.1

181 209 15.5 207 14.4

75 80 6.7 80 6.7

21 28 33.3 27 28.6

45 79 75.6 48 6.7

isbased solelyon node n and itsancestors,reaching_out(n)can be calculatedas node splitting

proceeds.Ifa hazard node issplit,each duplicateof the node must be added to the hazard node

set. Since the root node does not have conflictingparents,a topologicaltraversalof the CFG

using the graph coloringnode splittingtechniqueensuresthat no node in the resultinggraph has

conRictingparents.

Table 2 illustratesthe improvement of the one-passnode splittingalgorithmover the iterative

algorithmfor the COMPRESS applicationdescribedin Table 3 of Section4.1. The COMPRESS

applicationwas compiled on a SPARCserver 490 using the IMPACT C compiler[18]with a rollback

distanceof 10. Node count valuesrepresentpseudo instructions(Lcode) createdby the IMPACT C

compilerbeforeand aftersplitting.Seven ofthe 14 COMPRESS functionswhich requiredsplitting

axe listed.Algorithm run times representthe overallcompile times given each of the two node

splittingalgorithms.

Table 2 shows a marginal overallcode growth reductionfor the one-pass algorithm.Although

one functiondemonstrated a significantcode growth reduction(6.7% down from 75.6%), the func-

tionissmall and has minimal effecton the overallcode size.The improvement in compile-time

of the one-pass algorithm is more dramatic, resultingin a speedup of 30.2. The compile-time

improvement can be explainedas follows.If60 hazard variablesare presentin a given function,

the iterativealgorithm may requireup to 60 passesthrouF,h the CFG of that function,including

12
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Figure 6: Post-pass hazard removal using rea_i insertion.

60 dat_-flow xnalysis and hazard calculations. Although processing a given node in the one-pass

algorithm is slightly more complex, a single dat_-flow analysis calculation and a single pass through

the CFG are sufficient.

3.3 Performance Enhancement Through Profiling

3.3.1 Post-pass transformation versus loop protection

After hazards are removed by the compiler,some hazards remain and must be removed using a

post-passtransformation.Previous post-passtransformationsused hop insertionsto increaseall

antidependency distancesto > N [3].Since nop insertioncan be costlyto performance, previous

compiler transformationsremoved allhazards possible,leavingonly unresolvablehazards to be

removed by the post-passtransformation.

In Section3.1.2,a new post-passtransformationwas introduced in which nop insertionwas

replacedby read insertionsas the primary hazard removal technique.As illustratedin Figure6,up

to two branch hazards can be removed by a singleread instruction.The new post-passtransfor-

mation isveryefficientand insome casescan resolvebranch hazards with lessperformance impact

than pseudo-leveltransformations.Figures 11 and 13 of Section4.2 show performance overhead

comparisons between compiler-drivendata-flowmanipulationsand the post-passtransformationfor

the PUZZLE and TBL applicationsdescribedin Table 3 of Section4.1. Comp//PP indicatesthat

hazards areresolvedby the compilerwhere possible,with the remaining hazards being resolvedat

13



the pOstopass level. PP (post-pass) indicates that compiler transformations have been disabled and

that all hazards are removed at the post-pass phase.

For the PUZZLE application, compiler transformations produce better performance than the

post-pass transformation alone. For the TBL appl/cation, using the post-pass transformation to

remove all hazards produces slightly better performance than the combination of compiler and

post-pass transformations. Hazard elimination via read insertion introduces a guaranteed but small

performance impact due to the longer instruction path length. As demonstrated by the PUZZLE

appUcation, pseudo register renaming can eliminate hazards without impacting performance when

loop protection is infrequent. The save/restore operations of loop protection can result in more

performance impact than read insertion when loop protection is frequent, as demonstrated by

results for the TBL application.

Figure 7 illustrates the potential effect on performance given the following two types of hazard

removal: 1) hazard removal using register renaming that results in loop protection, and 2) hazard

removal using read insertion. If the protected loop of Figure 7 is executed 20 times and the hazard

instruction is executed two times, loop protection would require the execution of 40 additional

instructions, where read insertion would require the execution of only two additional instructions.

If the loop and hazard instruction execution frequencies were reversed, then read insertion would

produce more performance impact than loop protection. As shown in Figure 7, profiling data can

be used to aid in loop protection decisions. "'

3.3.2 Profiling effectiveness

Profiled data was included in the pseudo-level transformations of Section 3.2. The profile data is

comprised of both dynamic profile sampling and static prediction. The static prediction is used as

a supplement for areas of the application code that are unexecuted during profile sampling. For

static profiling, a loop is assumed to iterate ten times. Inner loops, therefore, iterate multiples

of 10 times depending on the depth of loop nesting. All loop header nodes and hazard nodes are

assigned weights based on the profile data.

Protection of loop I due to hazard node nh is required based on the following condition: if

nh_weight > 3 • (hdr_node(1)_weight), then protect loop I. The constant 3 adjusts the weights

to account for both direct and indirect loop protection costs. Direct loop protection costs result
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Figure 7: Loop protection versus read insertion.

from the save/restoreinstructionpair shown in Figure 7. Indirectloop protectioncosts result

from: 1)an increasednumber ofhazards which in turn requiredmore node splittingand more loop

protection,and 2) increasedregisterusage due to the save/restoreinstructionswhich can result

in additionalregisterspills.Figure 8 shows the run-time overhead for the TBL applicationwith

rollbackdistancesfrom I to 10. Pro//PP indicatesthatprofilingdata was used in loop protection

decisions.

The resultsshow thatthe use ofprofiledata can improve applicationperformance by postponing

some hazard resolutionsuntilthe post-passphase. Using profiledata to aid in loop protection

decisionsdid not produce performance equal to thatforthe post-passtransformation,forthe TBL

application.As an extensionto thiswork, profiledata can be used to aid inregisterallocation.As

discussedin Section3.2,hazards that are presentafterpseudo registerrenaming are resolvedby

adding hazard constraintsto liverange constraintspriorto registerallocation.These additional

constraintscan cause increasedregisterspillageand impact performance. Similar techniquesto

those developed forloop protectioncan be used to enhance registerallocationdecisions.
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Figure 8: TBL: profile data used for loop protection decisions.

Performance Evaluation

4.1 Implementation and Application Programs

The hazard removal transformation algorithms have been implemented in the MIPS code generator

of the IMPACT C compiler [18]. Transformations resolving pseudo register hazards (loop protec-

tion, node splitting, and loop expansion) are called just before register allocation. Transformations

resolving machine register hazards are called after the live range constraints have been generated

and before physical register allocation. The nop insertion algorithm, or post-pass algorithm, is

called before the assembly code output routine.

Table 3 lists the eleven application programs used in the evaluations. The applications were

cross-compiled on a SPARCserver 490 and then the compiled program was run on a DECstation

3100. Static Size is the number of assembly instructions emitted by the code generator, not including

the library routines and other fixed overhead.

The results are summarized in Figures 9 through 13. Each figure contains two plots, the first

plot shows the percent of run-time overhead ( Time 01t) of the referenced hazard resolution scheme,

and the second plot shows the percent of code growth overhead (Size OH) relative to the base values

in Table 3.

Four hazard resolution techniques were evaluated. Compiler I resolves on-path hazards only, us-

ing the compiler-driven data-flow manipulations. Compiler 2 extends the compiler transformations
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Table3: Applicationprograms.

Program Static Size Description

QUEEN 148 eisht-queen program

WC 181 UNIX utility

252QSORT quick sort algorithm

UNIX utilityCMP 262

GR,EP 907 UNIX utility

PUZZLE 932 simple game

COMPRESS 1826

LEX 6856

UNIX utility

lexical analyzer

YACC 8099 parser-generator

TBL 8197 table formatting preprocessor

CCCP 8775 preprocessor for gnu C compiler

to resolve both on-path and branch hazards. PP (post-pass) disables the compiler transforma-

tions and relies solely on the post-pass transformation presented in Section 3.1.2. Comp/PP uses

compiler transformations to resolve branch hazards with the techniques described in Section 3.2,

assumes a read buffer to resolve on-path hazards, and uses the post-pass transformation to remove

remaining branch hazards. Comp/PP represents the compiler-assisted multiple instruction rollback

scheme.

Due to the excessive compile times of the previous Compiler 1 and Compiler 2 algorithms for

large applications, the evaluations of these schemes were restricted to applications QUEEN, WC,

COMPRESS, CMP, PUZZLE, sad QSORT. Both Comp/PP sad PP were evaluated for all eleven

applications.

4.2 Performance analysis

Compiler transformations used for the removal of data hazards can impact performance in several

ways. Loop protection inserts save/restore operations at the head and tail of the loop. This increases

the path length and, therefore, the run time. Additional arcs in the dependency graph can cause

more spill code to be generated, increasing memory references and cache misses. Nop insertion

can be costly since up to N hops could be inserted for each unresolved hazard. The insertion of

MOV rk, rk instructions to create covering on-path hazards in the post-pass transformation also
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increasespath lengths, although typically less than with nop insertions. Finally, the increase in

code size, mainly due to loop expansion, may cause more run-time cache misses. The performance

numbers shown in Figures 9 through 13 are for execution of the eleven application programs on a

DECstation 3100 after they have been compiled with the transforms described.

4.3 Results: Compiler

As can be seenin Figures9 through 11,extendingthe compiler hazard resolutionscheme toinclude

branch hazards introduceslittleincrementalperformance impact or code growth overhead. Given a

rollbackdistanceof 10,resolvingboth on-path and branch hazards using compilertransformations

resultedin a maximum performance impact of 32.6% and an averageperformance impact of 12.6%.

This compares with maximum and averageimpacts of35.4% and 15.4%,respectively,forcompiler-

drivenon-path hazard resolutiononly.The maximum code sizeoverhead measured forthe extended

compiler-basedtechniquewas 328% with an averageoverhead of 207%, for a rollbackdistanceof

10. This compares with a maximum and averageoverhead of 372% and 225%, respectively,for the

unextended compiler-basedscheme.

These resultsindicatea small incrementalrun-time performance overhead and a small code

sizeoverhead given compiler-basedbranch hazard removal compared to compiler-basedon-path

hazard removal alone.Three factorsaccount forthese small incrementalimpacts. First,on-path

hazards dominate in frequencyof occurrence.Second, resolvingan on-path hazard at instruction

Ii through renazningcan sometimes resolvea branch hazard at instructionIi. Third, resolving

on-path hazards with nop insertionmay resolvea corresponding branch hazard by increasingthe

distancebetween the hazard node and itsnearestpredecessorbranch node.

4.4 Results: PP

Figures9 through 13 show the run-time and code sizeoverheadsforeach applicationstudiedusing

the read bufferto resolveon-path hazards and the post-passtransformationdescribedin Section

3 to cover allbranch hazards. The resultsare worst case in that many of the branch hazards

could have been resolved with no performance impact using the compiler techniques;instead,

they are resolvedby the insertionof MOV instructionswhich cause a guaranteed,although small,

performance impact. Given a rollbackdistanceof 10, the post-passtransformationproduced a
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maximum performance impact of 7.695{ with an average performance impact of 2.43%, significantly

below the levels produced by the compiler-baaed scheme. Code growth overhead measurements were

correspondingly lower with a maximum overhead of 13.0% and an average overhead of 8.59%.

4.5 Results: Comp/PP

The compiler-assisted scheme achieved consistently low performance overheads across all appUca.

tions and slightly better performance than with the post-pass transformation only. Given a rollback

distance of 10, the compiler-aasisted scheme produced a maximum performance impact of 6.57%

with an average performance impact of 2.03%, and a maximum code growth overhead of 51.2%

with and an average overhead of 15.5%. The run time results of PUZZLE, YACC, and CCCP in-

dicate that compiler techniques axe still useful in reducing run-time performance penalties. These

compiler techniques, however, have the disadvantage of requiring re, compilation and additional code

growth. The primary advantage of the compiler-aasisted mad post-pans schemes are their utilization

of the read buffer to resolve the more frequent on-path hazards.
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Figure 9: thin-time overhead and code size overhead: QUEEN.

19



Time OH: WC Size OH: WC
(%) (%)

35 Compiler 1: _ 400 Compiler 1: --e-
30 Compiler 2: - o- 350 Compiler 2: - o-

pp.. ...x.... pp.. ...x....
25 Comp/Pp. _ 300 Comp/Pp. .-_-.-

20 250
15 2OO

10 150

5 _ 100
0 50

-5 , , , , , , , , , , 0 , , '_" V Y 7 , , , ,
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Rollback Distance Rollback Distance

Tm_ OH: COMPRESS

(')Compiler 11 (:
35- -,- 400-

30 Compiler -o- 350
pP. ...K-.-.

25 Comp/PP: -.,t- ,= 300

20 /f 25015 200
/

10 __ ..d 1505 .a.. "--w'" "" " 100

0 _"_ 50

-5 , , , , , , , , , , 0
1 2 3 4 5 6 7 8 9 10

RoLlback Distance

Size OH: COMPRESS

)Compiler 1:
Compiler 2: - o -
pP. ...x....
Comp/PP: ..._...

0 I 2 3 4 5 6 7 8 9 10
Rollback Distance

Tin_
(¢,

35-

3O

25

20

15-

10

5

0

-5

OH: CMP Size OH: CMP

;) 400(._;)
Compiler 1: --0- Compiler h --0-

Compiler 2: - o -Compilerpp. 2: -...x....o- 350 - pp. ...K-..

Comp/PP: + 300

250

200

- 150

- I00
m, A A_ _ A j, a A A A_, ,., _...."- ........ x.-........ ,---, 50

i I , l I I , I , , I 0

1 2 3 4 5 6 7 8 9 10
RoLlback Distance

- Comp/PP: ..._...

e......._ ..... _ ..... _ ..... _ ..... _....._ ..... _ ..... _ ..... :_
I I I I I I | ! I I

0 1 2 3 4 5 6 7 8 9 10
RoLlback Distance

Figure 10: Run-time overhead and code size overhead: WC, COMPRESS, and CMP.
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Figure 11: Run-time overhead and code size overhead: PUZZLE, QSORT, and GREP.
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Figure 13: Run-time overhead and code size overhead: TBL.

Read Buffer Size Requirement

A practical lower bound and average size requirement for the read buffer are established in this

section by modifying the design to save only the data required for ronback. The study measures

the effect on the performance of ten application programs using six read buffer configurations with

varying read buffer sizes. Two alternative configurations are shown to be the most efficient.

Given a read buffer, rollback is accomplished by first flushing the read buffer back to the general

purpose register GPRF in the _everse order of which the values were saved. Provided that the depth

of the dual first-in-first-out (FIFO) read buffers are N, redundant copies of the appropriate register

values are available to restore the register file given a rollback of _< N.

The read buffer size requirement of 22V is the worst case. The buffer maintains the last N

register reads from the GPILF, assuring data redundancy for all values required. The read buffer

may also save data which is not required during rollback, gegister reads that must be saved can

be determined at compile time. If this information is added to the instruction encoding (e.g., as

an extra bit field for source 1 and for source 2), then the read buffer can be designed to save only

those values required. As long as the required values are maintained for N cycles, a less than 22V

read buffer size design is possible.

Figure 14 illustrates a case in which all register reads do not have to be placed in the read

buffer. The register values (denoted _alue(r_)) which require saving are marked with an "*." Since
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only the required values are saved, the read buffer total size can now potentially be less than N.

In this case, however, the instruction count must also be saved so that the value can be maintained

for at least N cycles. In the event that the read buffer overflows, the oldest value in the buffer

must be pushed to memory and a record kept so that during rollback the value can be retrieved

from memory. Given a dual FIFO depth of M, memory would serve the function of the remaining

N - M of the two FIFOs.

5.1 Read Buffer Designs and Evaluation Methodology

Six read buffer configurations were studied. Configuration A1, shown in Figure 15, has a separate

FIFO for each source bus. Configuration A2 allows access to either FIFO from either source bus.

Configuration B1 contains a single FIFO and assumes that both source operands can be written into

the single FIFO within the same cycle. This latter split-cycle-save assumption is consistent with a

register file design that writes during the first half of the cycle and reads during the second half of

the cycle [19]. Configuration B2 assumes no split-cycle-save capability. Configuration C contains

a single level dual queue to absorb a simultaneous operand save and configuration D extends this

design to allow access to either queue from either source bus.

The read buffer was simulated at the instruction level. The s-code emitted by the IMPACT

C compiler [18] was instrumented with procedure calls to a simulation program containing models

for the six read buffer configurations. Branch hazards were removed by the compiler for a rollback
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Figure 15: Read buffer configurations.

distance of 10. Parameters such as which operands require saving in the read buffer were determined

at the post-pass level and instrumentation code se_nents were adjusted to pass this information to

the simulation program. Table 3 lists the ten s application programs used in the evaluations. The

applications were cross-compiled on a SPARCserver 490 and run on a DECstation 3100 with read

buffer sizes ranging from 0 to 20 (note that 20 represents the maximum read buffer size of 2N).

5.2 Evaluation Results

5.2.1 Detailed analysis: QUEEN

Figure 16 shows changes in performance overhead (Cycles OH) for variousread buffersizesand

configurationsrunning the QUEEN application.Looking at Figure 16, configurationAt, itcan

be seen that significantperformance impact is incurredeven with a modest reduction in read

buffersize.ConfigurationA1 was consistentlythe leastefficientof the six configurationsacross

the ten applicationsstudied/ This is due to the factthat the dual FIFO's are dedicated to a

singlesourcebus. In many casessaving$1 willcause an overflowbecause the $1 FIFO isfull,even

though thereisroom inthe $2 FIFO. ConfigurationA1 does allowforsimultaneoussavesof$1 and

$2, given sufficientroom in each,but thisfeaturedoes not compensate for the latterinefficiency.

6The TBL application was not included in the read buffer size evaluation.

7An efficient configuration is one with _ low performance overhead given a small read buffer size.
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Configuration A2 demonstrates the improvement gained by allowing either source bus access to

either FIFO. Configuration B1 was the most effident of the six configurations for the QUEEN

application. In this configuration a total read buffer size of 13 would produce zero performance

impact with a 35% reduction in read buffer size.

It should be noted that configuration B1 assumes that simultaneous saves of $1 and $2 can be

handled within the same cycle. If this latter assumption is invalid, Figure 16, configuration B2,

shows that no less than 9.4% performance impact is achieved regardless of the read buffer size. The
41

"leveling off" of B2 is due to the bottleneck at the single FIFO entry point and not the depth of

the FIFO. The fiat part of the curve shows the percent of instructions requiring simultaneous saves

of S1 and $2 in the QUEEN application.

Figure 16, configuration C, shows how a single level dual queue placed between the source bus

and the single FIFO can alleviate some of the bottleneck effects. The dual queue can absorb a single

simultaneous save of S1 and $2, distributing the saves over multiple cycles. A nonzero minimum

performance overhead is still present due to cases in which the dual queue has not emptied before

the next simultaneous save occurs.

Figure 16, configuration D, shows the results of an improved queue structure which permits

saves from either bus into either queue. This configuration avoids stalls in some cases (e.g., $2

must be saved while the queue dedicated to $2 in configuration C is full and the other queue

is empty). Configuration D also has a nonzero minimum performance overhead but gives better
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Table 4: Read buffer size evaluation summary.

RBosize Oil_level (_

Program A2[ B1 A2 [ B1

QUEEN 14 12 1.66 1.36
WC 10 8 0.00 2.54

QSORT 16 15 2.28 0.94

CMP 12 11 0.00 0.00

GREP 10 10 0.18 0.18

PUZZLE 10 9 2.87 0.32

COMPRESS 12 12 2.87 1.12

LEX 12 12 2.73 1.55

YACC 16 15 1.07 0.00

CCCP 12 12 2.34 1.74

performance than configuration C.

The simulation results for QUEEN show that configuration A1 is the least efficient and that

given the ability to do split-cycle-saves, configuration B1 is the most efficient. Without the split-

cycle-save capability, configuration D is the best of the single FIFO designs resulting in a minimum

performance overhead of 4.5%, and configuration A2 is the best of the dual FIFO designs resulting

in a 1.7% performance overhead with a read buffer size of 14. For configurations B1, B2, C, and

D, a total read buffer size of 13 is su_cient to maximize performance, s

5.2.2 Evaluation of all application programs

Results for the other nine application programs are similar to those for QUEEN [17]. The differences

between the application results are the points at which the curve _levels off" (i.e., the buffer size)

and, in the case of configurations B2 through D, at what level the performance overhead stabilizes.

Table 4 summarizes measurements obtained for the ten applications given the two most efficient

configurations, A2 and B1. It is assumed for this study that minimal performance overhead can be

tolerated as a result of read buffer size reduction. For this reason, configuration comparisons are

made at read buffer size values which produce low values of performance overhead. Configuration

A2 does not level off like configuration D and does not rapidly approach zero like configuration

STwo must be added to each read buffer size value in C and D to account for the queues.
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B1. For a better comparison of configurations A2 and B1, Table 4 gives the read buffer size value

where the performance overhead value drops below 3%. The read buffer size value is referred to as

RB_size and the performance overhead value is referred to as OH_level.

It can be seen from Table 4 that the read buffer size requirement is roughly the same, per

application, regardless of the split-cycle-save assumption (i.e., comparing configurations A2 and

B1). The size requirement is application dependent - from 8 for WC, to 15 for QSOR.T and YACC.

The measurements show that a considerable reduction in read buffer size is achievable. Given the

split-cycle-save assumption and configuration B1, a rn|n|mnm Of 25_, a maximum of 60_, and an

average of 42% reduction was achieved. For configuration A2 and no split-cycle-save assumption,

a minimum of 20%, a maximum of 50%, and an average of 38.0% reduction was achieved. The

measurements indicate that care should be taken relative to the ultimate selection of read buffer

size. Given the steepness of the B1 curve around the RB_size value, small decreases in size can

produce large performance overheads.

5.2.3 Read buffer size requirement summary

Results show that two read buffer configurations were the most efficient. A dual FIFO with source

bus access to each (configuration A2) and the single FIFO with the split-cycle-save capability

(configuration B1) consistently out-performed the other four configurations. There were moderate

variances between the buffer sizes required for minimum performance impact between the ten

applications studied and the performance stabilization value assuming no split-cycle-save capability.

Up to a 55% read buffer size reduction was achieved with an average reduction of 39.5% given the

most efficient read buffer configuration for the applications. It was also found that given the

split-cycle-save assumption and single FIFO configuration, significant changes in the performance

overhead result from small changes in the read buffer size. Our results indicate that care should be

taken in the final selection of read buffer size in any given design.

6 Concluding Remarks

This paper has presented a compiler-assisted multiple instruction rollback scheme which combines

compiler-driven data-flow manipulations with dedicated data redundancy hardware to remove data
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hazards that resultfrom multipleinstructionrollbac.k.Experimental evaluationof the proposed

compiler-assistedscheme with a maximum rollbackdistanceof ten showed performance impacts of

no more than 6.57% and an averageimpact of 1.80%,overthe elevenapplicationprograms studied.

The performance evaluationindicateslowerperformance penaltiesthan forpreviouscompiler-only

approac.hesor comparable hardware-only approac.hes.Six read bufferconfigurationswere studied

to determine the minimum sizerequirementforgeneralapplications.Itwas found that a 55% read

buffersizereductionisachievablewith an averagereductionof 39.5%, but that additionalcontrol

logicto handle read bufferoverflowsmay limitthe overallhardware savings.

Future researchincludesapplicationof compiler-assistedmultipleinstructionrollbackrecov-

ery to super-scalar,VLIW, and parallelprocessingarchitectures.Evaluationsof compiler-assisted

rollbackrecovery appliedto speculativeexecutionrepaLrwould includemodifying compiler trans-

formationsto operatein a super-scalarand VLIW environment.
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